Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Comparative Medicine ; (6): 61-66,74, 2016.
Article in Chinese | WPRIM | ID: wpr-604133

ABSTRACT

Objective To simulate the process of hypoxic?ischemic brain injury at high altitude in a simulated cabin with plateau low pressure environment, and to prepare a rat model of cerebral injuries at different high altitudes. Method Thirty?two 0?day?old neonatal SD rats were divided into four groups, namely group A ( control group) and three test groups:group B (2000 m group), group C (4000 m group), and group D (6000 m group). The rats of control group were reared in a barrier environment. The rats of test groups were placed in a simulated cabin with plateau low pressure environment, and to prepare neonatal cerebral ischemia?hypoxia model by sport activities. The sport movements were carried out in the cabin in a swimming groove 60 min/d, and not less than 20 hours a day at high altitude low pressure environment. Zea Longa 5 point scale standard was used to determine the behavioral scores at the 3 th 7 th 11 th 15 th days, and samples were collected on the 15th day to observe red blood cell morphology using HE and 2, 3, 5?triphenyltetrazolium chloride ( TTC ) staining and ultrastructure by scanning electron microscopy. Result ( 1 ) The neurological scores of the test groups A, B, C were significantly different from that of the control group (P<0?05), and the scores of test group D and control group were very significantly different ( P <0?01 ) . ( 2 ) The histopathological examination using HE staining showed inflammatory cell infiltration in all rats of the test groups, and the extent of inflammatory cell infiltration was positively correlated with the increase of altitude. ( 3 ) The histopathology with TTC staining revealed prominent ischemia in the cerebral cortex of rats in the plateau hypoxic environment. ( 4 ) Scanning electron microscopy showed that the rat erythrocytes were cap?like in the group B, irregular in the group C, and zigzag shape in the group D. Conclusions In this study, a rat model of neonatal hypoxic?ischemic encephalopathy ( HIE) is successfully established by hypoxic cabin combined with sport activity. This model is stable, reliable, more closely mimicking the pathogenesis and clinical manifestation of neonatal HIE than models prepared with other methods, therefore, may be used in related research.

2.
Chinese Journal of Biotechnology ; (12): 1600-1609, 2016.
Article in Chinese | WPRIM | ID: wpr-243696

ABSTRACT

The non-structural (NS1) protein is a multifunctional molecular protein encoded by influenza A virus genome. NS1 plays an important role in inhibition of host immune responses. In order to assess the cellular localization of NS1 in different influenza A virus subtypes, we performed the immunofluorescence assay to observe the cellular location of NS1 after infection with influenza A virus WSN (H1N1), PR8 (H1N1), CA04 (H1N1), SD (H9N2) and AH01 (H7N9) in A549 cells and MDCK cells respectively. According to the results, NS1-WSN and NS1-PR8 accumulated mainly in cytoplasm at 24 h post infection, while the NS1-CA04 and NS1-SD appeared major in the nucleus. We also observed localization of NS1 by transfected 293T cells with plasmids which encoding the full-length NS1 from WSN, SD and AH01. The key sites which might determine the different cellular localization of NS1 were chosen by sequence alignment, and seven residues which were different between WSN, PR8 and CA04, SD and AH01 were finally focused. However, we found that single mutation of these residues could not alter the localization of NS1. The data indicated that the difference of location might not be caused by substitution of a single site, which contributes to our understanding of the diverse regulation of host factors during different subtypes of influenza virus infection.

SELECTION OF CITATIONS
SEARCH DETAIL